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A B S T R A C T

Despite being able to make accurate predictions, most existing prognostic models lack a proper indication about
the uncertainty of each prediction, that is, the risk of prediction error for individual patients. This hampers their
translation to primary care settings through decision support systems. To address this problem, we studied
different methods for transforming classifiers into probabilistic/confidence-based predictors (here called un-
certainty methods), where predictions are complemented with probability estimates/confidence regions re-
flecting their uncertainty (uncertainty estimates). We tested several uncertainty methods: two well-known ca-
libration methods (Platt Scaling and Isotonic Regression), Conformal Predictors, and Venn-ABERS predictors. We
evaluated whether these methods produce valid predictions, where uncertainty estimates reflect the ground
truth probabilities. Furthermore, we assessed the proportion of valid predictions made at high-certainty
thresholds (predictions with uncertainty measures above a given threshold) since this impacts their usefulness in
clinical decisions. Finally, we proposed an ensemble-based approach where predictions from multiple pairs of
(classifier, uncertainty method) are combined to predict whether a given MCI patient will convert to AD. This
ensemble should putatively provide predictions for a larger number of patients while releasing users from de-
ciding which pair of (classifier, uncertainty method) is more appropriate for data under study. The analysis was
performed with a Portuguese cohort (CCC) of around 400 patients and validated in the publicly available ADNI
cohort. Despite our focus on MCI to AD prognosis, the proposed approach can be applied to other diseases and
prognostic problems.

1. Introduction

Machine learning is at the core of major advances in healthcare and
medical domains. In the particular case of Alzheimer’s disease, the
leading cause of dementia [1], researchers have sought for robust su-
pervised learning models to predict whether a patient with Mild Cog-
nitive Impairment (MCI) is likely to convert to AD in the future [2,3].
These prognostic models might then be used to guide clinical decisions

in real-world situations concerning patients’ treatment, participation in
cognitive rehabilitation programs, and selection for clinical trials.
Nevertheless, despite the promising results attained by advanced ma-
chine learning methods [2,3], some issues have hampered their prac-
tical application in clinical settings [4]. In fact, most models output the
most likely prediction for new patients without providing an indication
of the uncertainty of each prediction, i.e., the risk of prediction error for
an individual patient. This precludes their usability in risk-sensitive
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decisions, typical in the medical domain.
Despite the above scenario, most classifiers provide measures that

could be used to estimate the uncertainty of predictions at instance-
level, in this case, at patient-level [5]. Some compute the probability
distribution over classes directly, such as Naïve Bayes (NB), Neural
Networks (NN), and Logistic Regression (LR). Others, such as Decision
Trees (DT), estimate the probability distribution ad hoc of the classifi-
cation task using measures related with inherent characteristics of the
classifier itself [6,7]. In this case, the predicted class is that with the
highest probability, and the probability assigned to the predicted (the
most likely) class reflects its degree of uncertainty. However, several
studies [7–10] have shown that some of these probability estimates are
not well-calibrated, i.e., they do not reflect the empirical probabilities
as the number of predictions goes to infinity [11]. NB, for instance, is
known to produce poor probabilities (often pushed towards 0 and 1)
due to the independence assumption, despite its generally accurate
performance [8,12,13]. Moreover, the leaf frequency-based probability
estimated by DT has a similar behavior [7,14]. This is prompted by the
effect of small leaves, potentially providing optimistic estimates and
thus introducing bias in the predictions [14,5]. Other classifiers, such as
LR and NN, produce well-calibrated probabilities [8,12,13]. In this
context, the reliability of these probability estimates strongly depends
on the classifier. Other supervised learning algorithms rely on distance-
based scores [15]. An example are Support Vector Machines (SVM),
where the distance to the hyperplane may be interpreted as a measure
of predictions’ reliability [16]. In this work, we refer to these measures
of uncertainty, directly computed by the classifier, as Direct Probability
Estimates (DPE).

Alternatively, calibration methods [6,7,9,14,17,18] perform an ad-
hoc mapping of the original probability estimates into probabilities that
better represents the true likelihood of predictions, thus correcting the
biased probabilities computed by some classifiers. Platt Scaling (PS)
[17] and Isotonic Regression (IR) [18,7] are the most commonly used
methods for probability calibration. Platt scaling was originally pro-
posed to transform SVM outputs into probabilities by fitting them
through a Logistic Regression [17]. It can be used with other classifiers
as well [13]. Isotonic Regression is a more flexible calibration method
since it only requires the mapping function to be isotonic (mono-
tonically increasing), making no assumption on its shape. Different
classifiers produce probability estimates characterized by different
distortions, that will, in turn, influence the benefit of each calibration
method. A comprehensive comparison between PS and IR using dif-
ferent classifiers is presented in [13]. In theory, PS is more appropriate
for classifiers whose prediction curve is sigmoid-shaped. That is the
case of maximum margin methods, such as SVM and boosted trees,
which tend to push predicted probabilities away from 0 and 1 [13]. IR
can also be used to calibrate probabilities with sigmoid-shape distor-
tions. However, it tends to overfit when using small calibration sets. IR
outperforms PS when calibrating probabilities estimated by NB, which
are closer to 0 and 1, or DT, which have a non-characteristic distortion
curve [13]. Some classifiers, such as LR and NN, produce well-cali-
brated probabilities and thus do not benefit from probability calibration
[13,19].

Although useful in practice, calibration methods do not provide any
validity guarantee or risk of error bound [20,15]. On the other hand,
Venn-ABERS predictors (VAs) [21–23] and Conformal Predictors (CPs)
[24] are theoretical-backed frameworks guaranteed to always produce
valid predictions in the form of perfect calibration, based on the ran-
domness assumption. Validity is the property of a predictor to output
probability distributions performing well against statistical tests as the
number of empirical probabilities goes to infinity. These methods differ
in the sense that VAs are probability-based predictors while CPs are
confidence-based predictors. In this context, VAs output the probability
of assigning a given class to a particular instance (patient in this case)
while CPs output a prediction region containing the predicted class
within a calibrated confidence interval.

We refer to the aforementioned methods as uncertainty methods
from now on for ease of readability. Several studies have theoretically
and empirically studied these uncertainty methods regarding the va-
lidity of the produced predictions when combined with different clas-
sifiers and datasets. Namely, researchers have compared VAs with ca-
libration methods (PS and IR) [21,22], the probability estimates
produced by classifiers with calibration methods [13] and with CPs
[25], and VAs with CPs [26]. Notwithstanding, there is a lack of studies
systematically evaluating different aspects of such methods using a
common dataset and with greater variability in the number of training
examples. For instance, most experiments are pursuit on large datasets
[13,22,27], while in some application domains, such as in dementia-
related research, data is scarce. Moreover, in order to give actionable
insight in risk sensitive decisions, predictions must be assigned with low
uncertainty estimates, while middle-values (around 0.5) are not very
informative. Therefore, choosing the most appropriate method for the
problem under study is not straightforward.

Despite the clinical relevance of evaluating the uncertainty of
prognostic predictions at patient-level, to our knowledge, defining
which method is more suitable for this purpose is still poorly studied. In
an exploratory study [25], we showed that credibility scores computed
by CPs are more informative than the posterior probabilities estimated
by NB when targeting uncertainty of predictions on the MCI to AD
conversion problem, using neuropsychological data. In general, CPs
produced few misclassifications for high-certainty levels. Nevertheless,
their efficiency was challenging, since many predictions were asso-
ciated to uncertainty estimates below the predefined certainty
threshold, and thus, they were considered as uncertain predictions (or
unpredictable cases). A different approach used to tackle prediction’s
uncertainty relies on survival methods. In [28], the authors provide a
framework, based on prognostic models built with the Cox Hazard
Proportional Regression, to interpret individual patient data. For each
MCI patient, it outputs the probability of progression to AD at 1 and 3
years follow-up, using demographic, cerebrospinal fluid, and imaging-
based biomarkers. Yet, once again, predictions with probability values
near 0.5 are not informative, since they lead to unpredictable cases.

In this work, we aim at exploring the most suitable approach to
complement predictions at patient-level with a valid measure of pre-
diction uncertainty for prognostic models in MCI. In this context, the
uncertainty methods should be compared regarding their interpret-
ability, calibration guarantees, and efficiency (number of predictions
with uncertainty estimates above the predefined certainty threshold)
since it directly impacts the usefulness of this approach in the clinical
settings. We thus provide an outright comparison between different
methods to measure the uncertainty of individual predictions for dif-
ferent classifiers. We studied Platt Scaling and Isotonic Regression since
these have been proved to work well empirically for a range of classi-
fiers [13]. Moreover, we investigated VAs and CPs due to their theo-
retically-backed foundations and successful application in health-re-
lated domains [29–31]. Furthermore, we tested the Cox Hazard
Proportional Regression model for the sake of comparability with the
study reported in [28].

As aforementioned, we are particularly interested in evaluating
predictions made at high-certainty thresholds, since these give action-
able insight. Cases that cannot be predicted given the certainty
threshold are referred, in this study, as unpredictable cases. In this line,
one drawback of the aforementioned prognostic models [28,25] regards
the limited number of predictions produced at high-certainty thresh-
olds, leaving many patients without a prognostic. Notwithstanding, we
hypothesize that unpredictable cases may differ across uncertainty
methods and classifiers used. In this context, predictions could be
complemented between them improving the number of predictions
outputted. With this in mind, we propose an ensemble-based approach,
where predictions from multiple classifiers and multiple methods able
to address the uncertainty of predictions are combined to predict
whether a given MCI patient will convert to AD. This ensemble should
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putatively provide predictions for a larger number of patients while
releasing users from deciding which pair of (classifier, uncertainty
method) is more appropriate for the data under study.

We perform this study using a Portuguese dataset, the Cognitive
Cohort Study (CCC) [32], and validated the proposed ensemble-based
approach targeting the uncertainty of predictions at patient-level using
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset [33].
The goal is to predict conversion from MCI to AD using neuropsycho-
logical data. Despite our focus on MCI to AD prognosis, we note that the
proposed approach can be applied to other diseases or prognostic
problems.

The paper is organized as follows. Section 2 describes the methods
used to target the uncertainty of predictions at patient-level as well as
the proposed ensemble-based approach. Section 3 presents data and
discusses the results obtained. Finally, Section 4 concludes the paper.

2. Methods

Fig. 1 illustrates the proposed ensemble-based approach using dif-
ferent classifiers and methods to target the uncertainty of predictions at
patient-level (named here as uncertainty methods). This approach
comprises two phases (1) Learning the best pairs (classifier, uncertainty
method) to assess the uncertainty at patient-level and (2) Ensemble of
pairs (classifier, uncertainty method) to provide predictions within
certainty thresholds. The learning process follows a nested cross-vali-
dation (CV) procedure repeated with fold randomization to access
model generalization. Each step of the proposed ensemble approach is
described in detail in the following subsections. We describe the
methods used to target uncertainty of predictions: DPE, calibration
methods (PS and IR), VAs and CPs. In the case of CPs several conformity
measures are used. We describe this measure and justify the proposal of
a new conformity measures for SVM. Finally, we describe the step
where methods and classifiers are combined into an ensemble.

2.1. Targeting the uncertainty of predictions at patient-level

This section contains a brief description of the methods used to
assess the uncertainty of predictions at patient-level in order to make
this paper self-contained. All methods are based on previously pub-
lished theory [17,18,24,21]. Let us assume that we are given a training
set …x y x y( , ), , ( , )n n1 1 1 1 , where x Xi is a vector of d attributes and
y Yi is the class label (we assume a binary classification problem).
Given a new test instance (xn) we aim to predict its class (yn) and an
estimation on the likelihood of its prediction being true: =y yn n, where
yn is the true label for . In this context, we study the performance of 1)
probability estimates given by standard classifiers, referred in this study
as Direct Probability Estimates, 2) calibration methods (Platt Scaling
and Isotonic Regression), 3) Conformal Predictors, and 4) Venn-ABERS
predictors. We discuss these methods regarding i) the interpretability of
the measure used to assess the risk of error for individual predictions, ii)
whether this measure is well-calibrated, and iii) the number of pre-
dictions made per certainty threshold.

2.1.1. Direct probability estimates (DPE)
Some supervised learning algorithms are scoring classifiers [22,5] in

the sense they estimate a real-valued score, s x( )i , per instance, which is
then compared to a threshold, c, to obtain a categorical prediction (0 if

<s x c( )i and 1, otherwise). This is the case of NN and NB, for instance.
This score can be used as a measure of the likelihood of the predicted
class. So, s (.) is hereby called the scoring function. Formally, a scoring
classifier is a mapping from the instance space I to a k-vector of real
numbers ( Is: k), where k is the number of classes. In binary clas-
sification, it usually suffices to consider the score of only one class. As
an example, NB computes the posterior probability distribution over
two possible classes. The predicted class is as likely as the maximum
posterior probability obtained. The probability of assigning the other
class is given by the complement to 1 of that maximum posterior

Fig. 1. Workflow of the ensemble-based approach using different classifiers and methods to target uncertainty of predictions at patient-level.
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probability. In this work, we use s x( )i to denote the score of the positive
class ( =y 1).

Other supervised learning algorithms, despite not being naturally
scoring classifiers, provide measures that can be used to compute
probability estimates ( =p x i( ), 0, 1i n ) for each of the two classes [6,7].
This is the case of DT, kNN, and SVM, for instance. While the first two
classifiers rely on the class distribution on the leaves or the nearest
neigbohrs, respectively, to compute probability estimates over classes,
the latter relies on distance-based scores, using the distance to the hy-
perplane as a measure of predictions’ likelihood [16]. We refer to these
measures as DPE.

Several studies [13,8–10] have shown that these probability esti-
mates are not well-calibrated, i.e., the predicted class probabilities do
not reflect the empirical probabilities as the number of predictions goes
to infinity [11].

The interpretability of the score, in this case, depends on the clas-
sifier. Probability estimates are easily interpreted in probabilistic clas-
sifiers, such as NB. For non-probabilistic classifiers, such as SVM, in-
terpretability depends on the knowledge of the users on this algorithm.
Probabilistic predictors produce well-calibrated predictions under
strong assumptions whereas simple (non-probabilistic) predictors have
no concept of guaranteed calibration.

2.1.2. Calibration methods
Calibration methods consist on ad hoc mappings of the original

probability estimates or prediction scores (s x( )i ) into more accurate
posterior probabilities [6,25,9,14,17,18]. Platt Scaling [17] and Iso-
tonic Regression [18] are the most prevalent methods for probability
calibration. In a nutshell, these calibration methods pass the prediction
scores (estimated by a scoring classifier) through a function that sear-
ches for the argument space that minimizes loss in order to improve the
probability estimates. The calibrated probability estimates are re-
stricted to a range between 0 and 1, being seen as the probability of
assigning the class 1 to instance xi. When given a test instance, xn, the
respective prediction score s x( )n is computed with the calibration
model, thus returning the calibrated probability estimate.

Platt Scaling fits a Logistic Regression to the prediction scores s x( )i :

= =
+ +

p y s x
exp s x

( 1| ( )) 1
1 ( ( ) )

,n n
n (1)

where parameters and are fitted using maximum likelihood esti-
mation from the training (or calibration) set: s x y( ( ), )i i . For more details,
we refer to [17].

Isotonic Regression [18] is a more flexible method for probability
calibration. Contrarily to PS, where the distortion correction follows a
sigmoid shape, IR only requires the mapping function to be isotonic,
i.e., monotonically increasing. Therefore, given the training set
s x y( ( ), )i i , the IR problem is to find a mapping function that best fits the
training set according to the mean-squared error criterion. The Pair-
Adjacent Violators (PAV) algorithm [34] is a possible solution to find a
stepwise constant isotonic function.

In order to avoid bias, the models should be learned with a cali-
bration set independent from the training set used to obtain the DPE
scores. We note that the quality of the calibrated probability estimates
is as good as the quality of the DPE scores given as input. PS is known to
perform better on classifiers whose prediction scores are sigmoid-
shaped, such as SVM or boosted trees [13]. However, when the cali-
bration set is large enough, IR performs similarly to PS in classifiers
with sigmoid-shaped curves and outperforms it for a broader range of
classifiers, such as NB, kNN, and DT [13]. Both calibration methods
give probabilistic predictions, which are straightforwardly inter-
pretable. However, as far as we know, they are not proved to be well-
calibrated in a general sense.

2.1.3. Conformal predictors (CPs)
Conformal Prediction is a machine learning framework built on top

of standard classifiers that, for a given test instance, produces a pre-
diction set guaranteed to include the true class, at a pre-specified
confidence level. CPs are valid under the randomness (i.i.d) assump-
tion, which states that instances are independently drawn from the
same distribution [24]. The new test instance (xn) is thus expected to
have the class label (yn) that makes it similar to the training instances of
the same class. The degree to which that similarity holds amongst the
known instances determines how confident the classifier is in that
prediction.

We introduce the idea behind the conformal prediction framework.
For a more formal description we refer to [24]. Let us assume that we
are given a training set …x y x y( , ), , ( , )n n1 1 1 1 , where x Xi is a vector
of attributes and y Yi is the class label (binary classification pro-
blem). Given a new test instance x( )n we aim to predict its class. In-
tuitively, we assign each class y Yn to xn, at a time, and then evaluate
how (dis)similar the instance x y( , )n n is in comparison with the training
data. A (non-)conformity measure, that assesses (dis-)similarity be-
tween instances by means of a numerical (non-)conformity score ( n) is
defined using the underlying classifier. To evaluate how different xn is
from the training set we compare its non-conformity score with those of
the remaining training instances = …xj j n: 0, , 1, using the p-value function:

=
= …

p
j n

n
( )

{ 1, , : }
,n

j n
(2)

where n is the non-conformity score of xn, assuming it is assigned to
the class label yn. If the p-value is small, then the test instance x y( , )n n is
non-conforming, since few instances x y( , )i i had a higher non-con-
formity score when compared with n. If the p-value is large, xn is very
conforming, since most instances x y( , )i i had a higher non-conformity
score when compared with n. Once p-values are computed, CP can be
used in one of the following ways:

1. Using prediction regions (CP-PR). For a given significance level ( ),
CPs output a prediction region, T : set of all classes with >p ( )n ,
contrarily to the single predictions given by standard classifiers.
These prediction regions have a guaranteed error rate (guaranteed
validity [24]). This means that the frequency of errors (fraction of
true values outside T ) does not exceed , at a confidence level 1
. Prediction regions may, therefore, comprise more than one class
(uncertain prediction), no class (empty prediction) or a single class
(certain prediction). Multiple predictions are not mistakes but a
reflection of the classifier not being confident enough to predict a
certain class. The smaller the prediction region, the more efficient
the conformal predictor [24]. Efficiency depends on the underlying
classifier and on the (non-)conformity measures used.

2. Using forced predictions (CP-FP). To have single predictions rather
than prediction regions, CPs predict the class with the highest p-
value (forced prediction), together with its credibility (the largest p-
value) and confidence (complement to 1 of the second highest p-
value). This has the cost of losing the guaranteed error bounded
confident interval. Confidence reveals how likely the predicted
classification is compared with the other classes. Credibility reveals
how suitable the CP is for classifying the given instance. Low
credibility means that either the training set is non-random or the
test instance is not representative of the training set. The probability
that the credibility is less than some threshold is less than
(randomness assumption) [35,24]. The higher the values of both
confidence and credibility the more reliable the prediction is. Con-
fidence may also be interpreted as the largest 1 at whichT has a
single prediction (certain prediction) and credibility as the largest
for which T is empty [24,36].

CPs have the advantage of enjoying guaranteed validity (i.e., perfect
calibration) [24]. Nevertheless, p-values and confidence concepts are
not as easily interpretable as probabilities.

Conformity measure for SVM
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We recall that the CP framework requires the definition of a non-
conformity (or conformity) measure to quantitatively estimate the
strangeness (or similarity) of an instance compared with other in-
stances. This measure arises from the underlying classifier, and it is
critical to the quality and efficiency of the predictions returned by CPs.
Different non-conformity measures have been proposed for widely used
classifiers [37–41]. For instance, it is common to use the posterior
probability estimated by NB to calculate the respective non-conformity
measure. When using SVM, the non-conformity score may be computed
using the weights assigned to the support vectors [41], the distance to
the separating hyperplane [38], or a compositive measure of the dis-
tance to the margin boundary of the class under consideration [42].
However, most of these non-conformity measures were restricted to the
Mondrian Conformal Prediction framework [24], a variant of CPs that
deals with imbalanced data, since the score of a given instance xn needs
to be computed with respect to its own class. In this context, we propose
a new conformity measure to be used with SVM, which, to our
knowledge, was not used before. Follows a description of the proposed
conformity measure for SVM based on the distance to the margin
boundaries of each possible class.

Let us assume a kernel function k x( ) and the decision boundary of a
kernel-based binary SVM = +y w k x b· ( ) . Given a test instance, xn, we
assign the positive class ( = +y 1p ) if the decision boundary is greater
than zero and the negative class ( =y 1p ), otherwise. The signed dis-
tance of a given instance, xn, to the separating (maximum-margin)
hyperplane is given by

=d y
w

,n
h

(3)

where y is the output of the SVM and w is the weighted sum of support
vectors (using the dual formulation of SVM). The distance to the margin
boundary of the class under consideration (predicted class) is given by

=d d
w

| 1 .i
mb

n
h

(4)

We note that
w
1 is the distance between the margin boundary and

the hyperplane. In this work, we define the conformity measure for
SVM as the distance between the instance and the margin boundary of
the class under consideration. Therefore, the conformity score ( )n

yp of
instance xn belonging to class yp is given by

=
< = > = +

+ < = + > =( )
d if y AND y OR y AND y

d if y AND y OR y AND y

, ( 0 1) ( 0 1).

, ( 0 1) ( 0 1).
n
y n

h
w p p

n
h

w p p

1

1
p

(5)

Fig. 2 provides an illustrative example of how the proposed con-
formity score is computed. As aforementioned, given an example (in
this case “A”) CPs assign, at a time, each possible class. Then, CPs
predict the class for which the training instances conform better with. If
we consider “A” to belong to the positive class = + +y( 1),p n

1 is the
distance to the margin boundary corresponding to the positive class

=+ )( )dn A
h

w
1 1 . On the other hand, if we consider “A” to belong to

the negative class =y( 1),p n
1 is the distance to the margin boundary

corresponding to the negative class. In case SVM place “A” in the ne-
gative side of the hyperplane, we penalize the conformity score with a
negative weight = +( )( )dn A

h
w

1 1 . The same holds when a ne-
gative instance is hypothesized as being of the positive class.

2.1.4. Venn-ABERS predictors (VAs)
Venn-ABERS [21], similarly to Conformal Prediction, is a machine

learning framework built on top of scoring classifiers, that produces
(multi)probabilities (instead of CPs p-values) to estimate the un-
certainty of predictions at patient-level. VAs are an adaptation of IR and
a special case of Venn Predictors [24,43], from which they inherit
guaranteed validity in the form of well-calibrated probability

predictions [22]. This means that “in the long term the relative frequency
of examples with the desired property, i.e., = =P y p x p{ 1| ( ) }pred among
those with predicted probability p of having that property is indeed p” [27].
IR is shown to overfit, especially when using small calibrations sets,
while VAs atenuate this tendency [13].

Analogously to CPs, given a test instance xn, we assign each class
y {0, 1}n to xn, at a time, and compute the respective prediction scores
s x( ( ))n using the underlying classifier. Let s x( )0 and s x( )1 represent the
scoring function learned with the training set including the instances
x( , 0)n and x( , 1)n , respectively. We fit an isotonic regression to the
series s x y( ( ), )i i0 , and = …s x y i n( ( ), ), 0, ,i i1 generating the function f x( )0
and f x( )1 , respectively. The multi-probabilistic prediction outputted by
VAs is p p f s x f s x( , ) ( ( ( )), ( ( )))n n0 1 0 0 1 1 , which corresponds to the lower
and higher probability of xn being from class 1. The difference between
p0 and p1 reflects how reliable the prediction is (the smallest the best)
[22].

Single-valued probabilities rather than multi-probabilities are pre-
ferable in real-world applications [27,22]. In this context, we can merge
these probabilities by minimizing a loss function at the cost of losing the
validity guarantee, although empirical evidence shows that high accu-
racy is maintained [22]. A commonly used metric is the log-loss in
which multi-probabilities are combined by

=
+

p
p

p p1
.1

0 1 (6)

VAs are advantageous over CPs in the sense that probabilities give a
more intuitive estimation of the uncertainty of predictions. Moreover,
they are easier to combine to find optimal decisions than confidence
measures (p-values) [26].

2.2. Ensemble-based approach to target the uncertainty of predictions at
patient-level

There are several methods to address the uncertainty of individual
predictions, each with its own strengths and flaws, which might depend
on data and on the classifier used to learn the model. In this context,
deciding which pair of (classifier, uncertainty method) is more suitable
to the problem at hand is not trivial, requiring a deep understanding of
both data and algorithms. Bayesian classifiers, for instance, produce
accurate confidence values for predictions when priors are known [44].
Yet, for real-world data, prior knowledge on generating data

Fig. 2. Illustration of the proposed non-conformity measure for SVM.
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distribution is missing, leading to incorrect confidence values. More-
over, the benefit of probability calibration methods depends on shape of
the predicted probability estimates given by each classifier and on data
size [13]. For instance, PS is typically more effective for classifiers
whose predicted probabilities produces sigmoid-shaped distortions
(such as those produced by SVM). In addition, PS works well on small
datasets while IR requires larger calibration sets to prevent overfitting.
In the case of VAs and CPs, the only requirement to have perfect cali-
bration is that data are independently and identically distributed.
Nevertheless, the number of predictions made at high-certainty
thresholds by CPs depends on the conformity measure, which in turn,
depends on the underlying classifier [45].

Moreover, one challenge when imposing certainty thresholds is the
low efficiency obtained (i.e., small number of predictions with un-
certainty estimates above the predefined threshold), and thus high
number of unpredictable cases. We hypothesize these unpredictable
cases may differ across the uncertainty methods and classifiers used.
Therefore, a higher number of reliable predictions are putatively
achieved if we complemented the results from different methods and
classifiers. In this scenario, we propose an ensemble-based approach
that combines multiple methods following different strategies to target
the uncertainty of predictions and different classifiers.

In the first step of the ensemble-based approach depicted in Fig. 1
(“Learning the best pairs (classifier, uncertainty method) to assess un-
certainty at patient-level” module), different classifiers are combined
with different strategies to assess the uncertainty of predictions: DPE,
calibration methods (PS and IR), CPs, and VAs. Then, in the second step
(“Ensemble of pairs (classifier, uncertainty method) to provide predic-
tions within certainty thresholds” module), the aggregator selects
which of these pairs should be included in the ensemble, according to a
predefined rule (described onward in Sections 2.3 and 3.3). Then, for
each patient (in the outer CV loop), each selected pair of (classifier,
uncertainty method) provides a prediction and the respective un-
certainty value, per threshold. The final prediction is that with the
highest uncertainty estimate given the certainty threshold. In this
context, we aim at quantitatively and qualitatively improve predictions
at patient-level.

2.3. Classification settings

We compared different strategies on the task of targeting un-
certainty of individual predictions (uncertainty methods): probability
estimates obtained directly by classifiers, calibration methods, con-
formal predictors, and Venn-ABERS predictors. In order to assess the
robustness of our comparative analysis, we used classifiers relying on
different approaches to tackle the classification problem and to com-
pute the likelihood of each prediction: Gaussian Naïve Bayes, Decision
Tree with J48 algorithm, Gaussian (SVM RBF) and Polynomial-kernel
(SVM Poly) Support Vector Machines using SMO implementation,
Logistic Regression and Neural Networks.

Table 1 depicts the metrics used, per classifier, to compute scores
from which uncertainty of predictions are calculated, either by using
them directly (DPE), by calibrating them (PS and IR), or by feeding

them into CPs and VAs frameworks. The non-conformity measure
log p( ) was previously used in conformal prediction studies using NB

[12,38]. We extended it to DT, LR and NN since these classifiers also
produce probability distributions over classes. For SVM we used the
signed output of SVM to be calibrated (PS and IR) or fed into VAs.
Moreover, we used the normalized signed output of SVM as DPE to
confine scores to a common range ([0, 1]), for the sake of comparability.
The conformity measure used in CPs is given by the proposed metric
defined in (5). Since data under study is not high dimensional, we used
the Transductive Conformal Prediction framework. When using cali-
bration methods (PS and IR), we used an inner 3-fold CV of the training
set to calibrate the models. We studied also whether the cumulative
distribution function (denoting the probability of progression to AD
occurring up to a given time), estimated by Cox Proportional Hazard
Regression models, represents a good indicator of the uncertainty of
predictions.

2.3.1. Evaluation
To evaluate the overall performance of the ensemble approach we

used a nested cross-validation procedure. First, an external 5-fold CV
was implemented in which data were randomly divided into 5 subsets
while maintaining class proportion (stratified CV). At each step, one
subset was left for testing (validation set) and the remaining subsets
were used for training. Then, we used the training set in a ×10 5-fold
stratified cross-validation scheme for each experiment: <classifier, un-
certainty method, threshold>. We tested three thresholds
( 0.80, 0.90, 0.95) considered useful in clinical practice. The perfor-
mance of each pair of classifier and method to assess uncertainty (per
threshold) was evaluated in the ×10 5-fold of the inner CV loop. To
evaluate classification performance, we assessed the Area Under the
ROC Curve (AUC), sensitivity (proportion of actual converting patients,
cMCI, which are correctly classified), and specificity (proportion of
non-converting patients, sMCI, which are correctly classified). Then,
the aggregator selects which pairs (classifier, uncertainty method) to
include in the ensemble. In this study, we used two general rules and
two specific rules that are defined in the aftermath of the results de-
scribed in Section 3.3. The former rules consist in 1) using all pairs
(classifier, uncertainty method) to assess the uncertainty of predictions,
and 2) using the uncertainty method with highest AUC per classifier.
Finally, the ensemble-based approach is evaluated using the validation
subset of the outer CV loop. We pursued the experiments using CCC
data and used ADNI to validate the final ensemble-based approach.

Dealing with a large number of (possibly irrelevant) features may
have a significant impact on both classification performance and model
simplicity and interpretability. In this context, we selected the most
relevant set of features by using the feature selection ensemble algo-
rithm proposed in [46]. This feature selection approach starts by
ranking features according to their relevance as assessed by a consensus
of different feature selection algorithms using a heterogeneous en-
semble. The best subset of features is composed by the top-ranked
features maximizing both predictability and stability performances (we
refer to [46] for details).

The statistical significance of classification results was evaluated

Table 1
Parameters and metrics used by each uncertainty method.

Classifier Parameters DPE CP VA-PS-IR Comment

NB Gaussian p =p y c xlog ( )i i p p is the posterior probability estimated by NB
DT confidence = 0.25 p =p y c xlog ( )i i p p is the frequency-based probability estimated by

DT
SVM Poly c = 1 degree = 2 signed y (normalized) 5 signed y y is the output estimated by SVM
SVM RBF c = 1 degree = 2 signed y (normalized) 5 signed y y is the output estimated by SVM

LR =ridge 10 8 p =p y c xlog ( )i i p p is the probability estimated by LR
NN l = 0.3 m = 0.2 No Layers. = (No. features+No.

classes)/2
p =p y c xlog ( )i i p p is the probability estimated by NN
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using the averaged AUC across the ×10 5-fold CV (using CCC dataset).
Friedman Tests [47] were used to check whether results obtained across
different uncertainty methods were significantly different. Pairwise
comparisons (using the Wilcoxon Signed Rank Test) were then per-
formed (with Bonferroni correction for multiple testing) to assess which
methods performed statistically better. We used IBM SPSS Statistics 24
to execute the statistical tests.

The described methodology, including the comparative analysis
using different classifiers and methods to target uncertainty of predic-
tions to the ensemble-based approach using the best-performing un-
certainty methods was implemented in Java using WEKA’s functional-
ities. The survival analysis was performed in Python using Scikit-survival
package.

3. Results and discussion

In this section, we first describe data used in this study: ADNI and
CCC datasets. Then, we compare, qualitatively and quantitatively, the
performance of different uncertainty methods combined with different
classifiers using CCC dataset. Thereafter, we present the results ob-
tained with the ensemble-based approach to target uncertainty of in-
dividual predictions (Fig. 1) using CCC and ADNI datasets. The set of
rules used in the aggregator are drawn based on CCC results and vali-
dated with ADNI data.

3.1. Data

Participants were selected from two large prospective studies: ADNI
project (http://adni.loni.usc.edu/) [33] and Cognitive Complaints Co-
hort (CCC) [32]. Participants with the clinical diagnosis of MCI at the
baseline (first) assessment and who had at least one follow-up assess-
ment were chosen. Demographic and neuropsychological data from
different cognitive domains were selected in both datasets. Informed
consent to participate in the study was obtained from all participants.

We followed the strategy to create learning instances using time
windows described in [2]. Based on this, for a given time-window, we
label patients that convert to dementia within a predefined interval
(progressed from MCI to AD in one of the yearly assessments up until
the limit of the window) as cMCI (converter MCI). Patients that didn’t
convert to AD during that period and presented a diagnosis of MCI at
the limit of the window or afterward are included in the learning set
labeled as sMCI (stable MCI). We chose a follow-up of 4-years since it
corresponds to the maximum time width without skewed class pro-
portions, for both CCC and ADNI datasets.

3.1.1. Cognitive complaints cohort
The Cognitive Complaints Cohort [32] is a prospective study con-

ducted at the Faculty of Medicine of Lisbon to investigate the pro-
gression to dementia in subjects with cognitive complaints based on
extensive neuropsychological evaluation. The inclusion criteria for ad-
mission to CCC were the presence of cognitive complaints and com-
pleting assessment with a neuropsychological battery, designed to
evaluate multiple cognitive domains and validated for the Portuguese
population (Bateria de Lisboa para Avaliação das Demências – BLAD
[48]). The exclusion criteria for admission to CCC were a diagnosis of

dementia (according to DSM-IV [49]) or other disorders that may cause
cognitive impairment. For the purpose of this study, participants were
diagnosed with Mild Cognitive Impairment when fulfilling the criteria
of the MCI Working Group of the European Consortium on Alzheimer’s
disease [50]. Participants could later be diagnosed with AD according
to the DSM-IV [49] criteria at follow-up.

The dataset included 41 features covering demographic and neu-
ropsychological data. The feature selection approach described in [46]
selected 20 features (we refer to [46] for more information on the se-
lected features). From a total of 402 MCI patients, 227 (56%) patients
remained stable and 175 (44%) converted to dementia within the
follow-up period. Table 2 presents demographic characterization data.
Converting patients are older and have fewer years of formal education
than those who remained MCI while no statistical differences were
found concerning gender.

3.1.2. ADNI
ADNI was launched in 2003 as a public-private partnership led by

Principal Investigator Michael W. Weiner [33]. It aims at finding re-
levant biomarkers in all stages of AD to guide clinical trials for novel
drugs or treatments. ADNI includes several biomarkers of Alzheimer’s
disease beyond neuropsychological tests, such as cerebrospinal fluid,
structural Magnetic Resonance Imaging (MRI), functional-MRI, Posi-
tron Emission Tomography, and other biological data. Data is collected
from every ADNI participant at the baseline assessment, as well as
annual follow-up consultations. Participants were diagnosed with Mild
Cognitive Impairment in the presence of a self-report (or via an in-
formant) memory complaints without severe interference on daily live
activities, objective memory deficit and absence of significant impair-
ment on non-memory cognitive domains and of dementia. The
NINCDS/ADRDA criteria were used to classify patients with probable
AD.

In this work, we used 79 demographic and neuropsychological
features from ADNI-2 patients (accessed in June 2017). After running
the feature selection approach described in [46], 32 features were
chosen (we refer to [46] for more information on the selected features).
From a total of 265 MCI patients, 143 (54%) patients remained stable
and 122 (46%) converted to dementia within the follow-up period. No
differences were found in gender and years of formal education be-
tween converting and non-converting patients. On the other side,
converting patients are older than those who remained MCI during the
follow-up period.

3.2. Qualitative comparison between uncertainty methods using different
classifiers

Fig. 3 illustrates the distribution of the estimated uncertainty values
for correctly and incorrectly predictions as histograms, using six clas-
sifiers. Each histogram represents the level of uncertainty (i.e. the
likelihood of the prediction being incorrect) to whom each patient is
classified in the positive class ( =y 1), as assessed by probabilities (PS,
IR, and VAs), credibility (CPs) or direct probability estimates. Optimal
results are those where correctly classified patients are either close to 0
or close to 1 and incorrectly classified cases are close to 0.5. The pre-
diction space was discretized into fifty bins. For each bin, the number of

Table 2
Baseline demographic characterization data.

CCC ADNI

sMCI cMCI p-value sMCI cMCI p-value

No. of instances (%) 227 (56%) 175 (44%) – 143 (54%) 122 (46%) -
Age, years (M ± SD) 65.5 ± 9.1 71.9 ± 8.3 < 10–12∗ 72.1 ± 7.3 74.8 ± 7.6 <0.004∗

Formal Education, years (M ± SD) 10.4 ± 4.7 8.8 ± 4.8 < 0.001∗ 16.1 ± 2.8 16.0 ± 2.6 0.895
Gender (male/female) 85/142 60/115 0.995 82/61 70/52 0.995
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occurrences was averaged over experiments (repetitions and CV-folds).
As expected, the posterior probabilities (name here as DPE) esti-

mated by NB are shifted toward 0 and 1, for both correct and incorrect
predictions, which is useless from a clinical decision point of view.
Similar behavior was observed for NN and DT, although in the latter the
two peaks have a wider distribution (Fig. 3). PS (and IR in the case of
DT) pushed these peaks to the central region and is thus not adequate to
calibrate predictions. IR represents a better choice to calibrate NB, as
most of the incorrectly predicted values lie in the central region, while
correctly predictions fall near 0 or 1. In the case of NB, VAs produced
probability distributions similar to IR, while CPs (despite placing
credibility values of most wrong predictions between 0.4 and 0.8)
spread the correct prediction over the entire range of values. When
coupled with NN, VAs moved the probability mass to the center, in-
cluding nearly all the estimated probabilities associated with mis-
classified cases. Moreover, they isolate two peaks of correct predictions
close to 0 and 1, despite compromising a small number of cases.

Conversely to NB and DT, the scores computed by SVM (here de-
noted as DPE) tend to lie in the central region with few predictions
reaching 0 or 1. We expected Platt Scaling to effectively calibrate these
probabilities, as maximum-margin algorithms produce sigmoid-shaped
distortions. Indeed, PS moved the probability mass away from the
middle prediction values, in particular those that correspond to correct
predictions. However, post-calibration using IR, which corrects any
monotonic distortion, achieved similar results. Moreover, VAs also
produced a distribution of correct predictions with two peaks near 0
and 1, and the mass of incorrectly probabilities is mainly positioned in
the center. Once again, CPs successfully identified wrongly classified
cases as uncertain (peak of credibility values range from 0.4 to 0.8) but
failed to push correct predictions toward the maximum (or minimum
when the negative class is assigned) credibility values. Finally, LR
produced well-calibrated probabilities and thus post-calibration
methods (PS and IR) did not seem to help. CPs and VAs produced si-
milar transformations of prediction scores for all classifiers. These
methods shifted incorrectly classified cases to the center and thereby
label those as uncertain, while forcing some correct predictions (as-
signed previously with high probability values by DPE) to middle-un-
certainty estimates (close to 0.5). Our findings are in line with the re-
sults shown in [13,22,21].

Fig. 4 is analogous to Fig. 3 when using the probability of pro-
gression to AD within 4-years computed by the Cox Hazard Regression

model. Two peaks of probability (of correct and incorrect predictions)
are evidenced close to the tails. However, some misclassified cases are
also spread over all probability values.

3.3. Quantitative comparison between uncertainty methods using different
classifiers

We now discuss the performance of each prognostic model learned
with different classifiers and uncertainty methods per threshold
( 0.80, 0.90, 0.95), as assessed by AUC, sensitivity, specificity, and
number of predictions made above the predefined certainty thresholds
(Tables 3–5, respectively). Statistically significant differences in the
classification performance (AUC) amongst different uncertainty
methods were found, per classifier, as assessed by the Friedman Test
[47] (p <0.0005). Pairwise comparisons (using the Wilcoxon Signed
Rank Test [47]) were then performed (with Bonferroni correction for
multiple testing, <p 0.002) to compare such approaches across thresh-
olds, per classifier.

When using NB as the underlying classifier, CPs and VAs

Fig. 3. Histogram plots showing the distribution
of the uncertainty estimates for correctly (blue/
dark) and incorrectly (orange/light) predictions
for each classifier and uncertainty method.
Values of Y-axis vary amongst the subplots to
maximize the view in each subplot. (For inter-
pretation of the references to colour in this figure
legend, the reader is referred to the web version
of this article.)

Fig. 4. Histogram with the probability of progression to AD within 4-years for
correct (blue/dark) and incorrect (orange/light) predictions, computed by the
Cox Hazard Regression model, using CCC. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)
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outperformed the remaining methods in the task of predicting conver-
sion from MCI to AD ( <p 0.0005) for all certainty thresholds. No dif-
ferences were found between CP-FP or CP-PR frameworks ( <p 0.861),
or between CPs and VAs ( <p 0.026). However, CPs and VAs achieved a
smaller number of predictions (Table 3). Not surprisingly, using a sig-
moid transformation is not appropriate to calibrate NB models as PS
attained the poorest results. On the other hand, IR obtained results
equivalent to DPE ( <p 0.02). All uncertainty methods, excepting for PS,
produced good and well-balanced results in terms of sensitivity and
specificity.

Of all classifiers, DT yielded the weakest classification results. Both
calibration methods (PS and IR) and CP-PR failed to produce predic-
tions at high-certainty levels ( 0.90, 0.95). This could be foreseen by
observing Fig. 3 (2nd column, 2nd and 3rd rows), where the mass
probability is placed in two peaks pulled to the center. VAs out-
performed the remaining methods ( <p 0.0005). However, they had the
lowest AUC across all tested classifiers. In this context, in general, DT

does not seem to be suitable for this prognostic problem.
LR is known to provide well-calibrated probabilities [13]. Indeed,

calibration methods such as IR and PS did not offer any further benefit
( <p 0.0005). Nevertheless, CPs outperformed DPE predictions in terms
of classification performance (AUC, sensitivity, and specificity), at the
cost of providing predictions for a smaller number of MCI patients
(lower number of predictions for all thresholds). No significant differ-
ences were found between VAs and DPE (p = 0.586). However, once
again, DPE showed the advantage of producing a higher number of
predictions.

NN are also claimed to typically produce well-calibrated predictions
[13]. However, in this work, the probabilities estimated by NN had
similar behavior to those produced by NB (with values pushed towards
0 and 1). This miscalibration of NN was also reported in [51], with
authors assigning this issue to the increase of model capacity (increase
in width and depth of the neural network) and lack of regularization.
Therefore, NN benefited from calibration with CP-PR and VAs,

Table 3
AUC computed for each classifier and uncertainty method, per threshold, using CCC. The percentage of predictions above the respective threshold is reported within
brackets.

NB

DPE CP - FP CP – PR VA Platt IR

All 0.869 ± 0.0 0.869 ± 0.00 – 0.858 ± 0.0 0.825 ± 0.01 0.853 ± 0.0
0.80 0.876 ± 0.01 (96%) 0.933 ± 0.00 (40%) 0.936 ± 0.0 (39%) 0.885 ± 0.02 (57%) 0.614 ± 0.07 (49%) 0.885 ± 0.01 (65%)
0.90 0.884 ± 0.0 (90%) 0.964 ± 0.01 (21%) 0.969 ± 0.0 (19%) 0.957 ± 0.02 (17%) 0.0 ± 0.0 (0%) 0.901 ± 0.03(30%)
0.95 0.891 ± 0.0 (86%) 0.993 ± 0.01 (9%) 0.964 ± 0.0 (8%) 0.986 ± 0.51 (5%) 0.0 ± 0.0 (0%) 0.935 ± 0.05(12%)

DT

DPE CP - FP CP – PR VA Platt IR

All 0.745 ± 0.02 0.697 ± 0.02 – 0.662 ± 0.01 0.732 ± 0.02 0.751 ± 0.02
0.80 0.748 ± 0.02 (87%) 0.699 ± 0.03 (77%) 0.692 ± 0.46 (1%) 0.878 ± 0.02 (43%) 0.502 ± 0.27 (12%) 0.444 ± 0.16 (31%)
0.90 0.726 ± 0.03 (61%) 0.651 ± 0.02 (53%) 0.0 ± 0.0 (0%) 0.869 ± 0.04 (27%) 0.0 ± 0.0 (0%) 0.287 ± 0.31 (2%)
0.95 0.664 ± 0.05 (30%) 0.591 ± 0.32 (31%) 0.0 ± 0.0 (0%) 0.775 ± 0.29 (6%) 0.0 ± 0.0 (0%) 0.154 ± 0.25 (1%)

LR

DPE CP - FP CP – PR VA Platt IR

All 0.866 ± 0.01 0.866 ± 0.01 – 0.861 ± 0.01 0.849 ± 0.01 0.846 ± 0.01
0.80 0.916 ± 0.01 (61%) 0.939 ± 0.01 (42%) 0.951 ± 0.01 (31%) 0.919 ± 0.01 (50%) 0.895 ± 0.04 (58%) 0.901 ± 0.02 (56%)
0.90 0.931 ± 0.02 (41%) 0.959 ± 0.01 (21%) 0.969 ± 0.01 (13%) 0.925 ± 0.04 (26%) 0.570 ± 0.40 (4%) 0.900 ± 0.05 (25%)
0.95 0.943 ± 0.02 (27%) 0.968 ± 0.01 (10%) 0.976 ± 0.0 (5%) 0.921 ± 0.01 (6%) 0.0 ± 0.0 (0%) 0.817 ± 0.29 (11%)

SVM Poly

DPE CP - FP CP – PR VA Platt IR

All 0.856 ± 0.01 0.859 ± 0.00 – 0.792 ± 0.01 0.852 ± 0.01 0.846 ± 0.01
0.80 0.953 ± 0.02 (23%) 0.931 ± 0.01 (42%) 0.946 ± 0.01 (26%) 0.907 ± 0.01 (43%) 0.914 ± 0.02 (46%) 0.903 ± 0.02 (54%)
0.90 0.990 ± 0.02 (9%) 0.956 ± 0.02 (21%) 0.980 ± 0.02 (9%) 0.910 ± 0.02 (28%) 0.925 ± 0.03 (23%) 0.918 ± 0.04 (29%)
0.95 0.997 ± 0.01 (5%) 0.975 ± 0.02 (11%) 1.0 ± 0.0 (3%) 0.980 ± 0.04 (5%) 0.928 ± 0.07 (11%) 0.929 ± 0.04 (12%)

SVM RBF

DPE CP - FP CP – PR VA Platt IR

All 0.866 ± 0.01 0.868 ± 0.00 – 0.853 ± 0.00 0.868 ± 0.00 0.855 ± 0.00
0.80 0.939 ± 0.01 (27%) 0.925 ± 0.00 (41%) 0.928 ± 0.00 (39%) 0.868 ± 0.01 (59%) 0.910 ± 0.01 (51%) 0.882 ± 0.01 (65%)
0.90 0.957 ± 0.02 (10%) 0.952 ± 0.01 (20%) 0.954 ± 0.01 (20%) 0.907 ± 0.04 (17%) 0.915 ± 0.03 (27%) 0.902 ± 0.03 (29%)
0.95 0.945 ± 0.03 (5%) 0.959 ± 0.01 (11%) 0.961 ± 0.01 (9%) 0.288 ± 0.46 (4%) 0.956 ± 0.03 (13%) 0.882 ± 0.06 (12%)

NN

DPE CP - FP CP – PR VA Platt IR

All 0.778 ± 0.02 0.772 ± 0.01 – 0.691 ± 0.02 0.765 ± 0.02 0.789 ± 0.02
0.80 0.794 ± 0.02 (89%) 0.866 ± 0.03 (47%) 0.945 ± 0.03 (18%) 0.932 ± 0.02 (22%) 0.589 ± 0.05 (15%) 0.867 ± 0.03 (39%)
0.90 0.802 ± 0.02 (83%) 0.902 ± 0.03 (21%) 0.949 ± 0.03 (12%) 0.932 ± 0.02 (21%) 0.0 ± 0.0 (0%) 0.891 ± 0.04 (16%)
0.95 0.811 ± 0.02 (77%) 0.917 ± 0.04 (11%) 0.945 ± 0.05 (7%) 0.932 ± 0.0 (21%) 0.0 ± 0.0 (0%) 0.872 ± 0.07 (10%)
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outperforming the remaining uncertainty methods ( <p 0.001). IR and
CP-FP methods performed equally ( =p 0.041).

CP-PR and DPE achieved the highest classification performance over
the three thresholds when using SVM with the polynomial kernel as the
underlying classifier ( <p 0.0005), despite the small number of predic-
tions. CP-FP, VAs, and PS, whose performance was statistically com-
parable ( <p 0.909), followed. When using SVM with the Gaussian
(RBF) kernel, PS performed as well as CPs and DPE, obtaining a higher
number of predictions. In this case, and as expected, PS is more suitable
to calibrate SVM predictions than IR ( <p 0.0005). No differences were
found between IR and VAs ( <p 0.057). The calibration methods and
VAs yielded, in general, slightly higher values of specificity than sen-
sitivity, while CP-FP and DPE showed the inverse relationship between
sensitivity and specificity.

In the literature, VAs proved to produce improved calibrated
probabilities when compared to calibration methods (PS and IR), as
assessed by Brier Loss and Log Loss scores, using a variety of classifiers

and datasets [19,21,22]. Moreover, DPE outperformed IR sometimes,
mainly when using Bagging DT, LR, and NN [21]. Comparisons between
VAs and CPs are scarce. In a report [26], authors compare the perfor-
mance between conformal and probabilistic results on predicting
bioactivity with an estimate of its uncertainty. In particular, they used
(confident) p-values and (VAs) probabilities to rank instances for the
purpose of screening. CPs and VAs produced similar results. Still, the
ranking obtained from CPs had a finer granularity than that outputted
by VAs, in the sense that more instances shared the same probability
than the same p-value.

Table 6 reports the classification performance obtained using the
Cox Proportional Hazard Regression model. It achieved comparable
results to VAs ( <p 0.052) and PS ( <p 0.011) built on top of DT and LR,
respectively. Moreover, it produced superior performances to PS and
VAs, when using NB and NN, and SVM RBF, respectively ( >p 0.002).
Finally, it underperformed the remaining pairs of (classifier, un-
certainty method). In [52], this survival method also underperformed

Table 4
Sensitivity computed for each classifier and uncertainty method, per threshold, using CCC. The percentage of predictions above the respective threshold is reported
within brackets.

NB

DPE CP - FP CP – PR VA Platt IR

All 0.789 ± 0.01 0.823 ± 0.01 – 0.760 ± 0.02 0.783 ± 0.01 0.751 ± 0.02
0.80 0.809 ± 0.01 (96%) 0.928 ± 0.01 (40%) 0.868 ± 0.01 (39%) 0.801 ± 0.02 (57%) 0.04 ± 0.144 (49%) 0.842 ± 0.02 (65%)
0.90 0.827 ± 0.01 (90%) 0.995 ± 0.01 (21%) 0.918 ± 0.01 (19%) 0.925 ± 0.06 (17%) 0.0 ± 0.0 (0%) 0.792 ± 0.06 (30%)
0.95 0.843 ± 0.00 (86%) 1.0 ± 0.0 (9%) 0.936 ± 0.01 (8%) 1.0 ± 0.0 (5%) 0.0 ± 0.0 (0%) 0.911 ± 0.12 (12%)

DT

DPE CP - FP CP – PR VA Platt IR

All 0.688 ± 0.03 0.710 ± 0.02 – 0.615 ± 0.02 0.668 ± 0.02 0.668 ± 0.02
0.80 0.713 ± 0.02 (87%) 0.658 ± 0.04 (77%) 0.825 ± 0.33 (1%) 0.768 ± 0.04 (43%) 0.050 ± 0.12 (12%) 0.449 ± 0.17 (31%)
0.90 0.703 ± 0.04 (61%) 0.612 ± 0.07 (53%) 0.0 ± 0.0 (0%) 0.773 ± 0.07 (27%) 0.0 ± 0.0 (0%) 0.287 ± 0.31 (2%)
0.95 0.761 ± 0.05 (30%) 0.556 ± 0.09 (31%) 0.0 ± 0.0 (0%) 0.623 ± 0.31 (6%) 0.0 ± 0.0 (0%) 0.167 ± 0.25 (1%)

LR

DPE CP - FP CP – PR VA Platt IR

All 0.741 ± 0.01 0.821 ± 0.01 – 0.729 ± 0.01 0.725 ± 0.01 0.699 ± 0.01
0.80 0.844 ± 0.02 (61%) 0.935 ± 0.02 (42%) 0.919 ± 0.02 (31%) 0.888 ± 0.03 (50%) 0.814 ± 0.01 (58%) 0.834 ± 0.04 (56%)
0.90 0.881 ± 0.03 (41%) 0.962 ± 0.02 (21%) 0.947 ± 0.03 (13%) 0.885 ± 0.05 (26%) 0.279 ± 0.40 (4%) 0.840 ± 0.12 (25%)
0.95 0.898 ± 0.03 (27%) 1.0 ± 0.0 (10%) 0.956 ± 0.05 (5%) 0.829 ± 0.14 (6%) 0.0 ± 0.0 (0%) 0.793 ± 0.29 (11%)

SVM Poly

DPE CP - FP CP – PR VA Platt IR

All 0.741 ± 0.01 0.835 ± 0.01 – 0.744 ± 0.01 0.743 ± 0.01 0.709 ± 0.02
0.80 0.969 ± 0.02 (23%) 0.937 ± 0.01 (42%) 0.925 ± 0.02 (26%) 0.860 ± 0.03 (43%) 0.835 ± 0.03 (46%) 0.846 ± 0.03 (54%)
0.90 0.987 ± 0.03 (9%) 0.961 ± 0.01 (21%) 0.965 ± 0.04 (9%) 0.837 ± 0.05 (28%) 0.826 ± 0.09 (23%) 0.837 ± 0.10 (29%)
0.95 0.992 ± 0.02 (5%) 0.991 ± 0.02 (11%) 1.0 ± 0.0 (3%) 0.956 ± 0.07 (5%) 0.849 ± 0.15 (11%) 0.920 ± 0.06 (12%)

SVM RBF

DPE CP - FP CP – PR VA Platt IR

All 0.737 ± 0.00 0.834 ± 0.01 – 0.793 ± 0.02 0.733 ± 0.03 0.753 ± 0.03
0.80 0.954 ± 0.01 (27%) 0.932 ± 0.00 (41%) 0.868 ± 0.01 (39%) 0.782 ± 0.02 (59%) 0.835 ± 0.03 (51%) 0.806 ± 0.06 (65%)
0.90 0.995 ± 0.01 (10%) 0.955 ± 0.01 (20%) 0.923 ± 0.01 (20%) 0.797 ± 0.12 (17%) 0.816 ± 0.08 (27%) 0.818 ± 0.07 (29%)
0.95 1.0 ± 0.0 (5%) 1.0 ± 0.0 (11%) 0.917 ± 0.03 (9%) 0.30 ± 0.48 (4%) 0.764 ± 0.02 (13%) 0.788 ± 0.29 (12%)

NN

DPE CP - FP CP – PR VA Platt IR

All 0.677 ± 0.03 0.799 ± 0.02 – 0.615 ± 0.10 0.685 ± 0.02 0.618 ± 0.05
0.80 0.693 ± 0.02 (89%) 0.846 ± 0.03 (47%) 0.938 ± 0.04 (18%) 0.924 ± 0.04 (21%) 0.0 ± 0.0 (15%) 0.798 ± 0.07 (39%)
0.90 0.708 ± 0.03 (93%) 0.865 ± 0.05 (22%) 0.946 ± 0.05 (12%) 0.924 ± 0.04 (21%) 0.0 ± 0.0 (0%) 0.846 ± 0.11 (16%)
0.95 0.718 ± 0.03 (77%) 0.859 ± 0.06 (11%) 0.939 ± 0.05 (7%) 0.922 ± 0.04 (21%) 0.0 ± 0.0 (0%) 0.834 ± 0.15 (10%)
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other commonly used classifiers when predicting the need for non-in-
vasive ventilation in patients with Amyotrophic Lateral Sclerosis. In this
context, we decided to pursue the analysis without this method.

In a nutshell, if we would have to select a single method to output
calibrated probability estimates for a similar classification problem and

data, independently of the classifier, it would be CP-PR. It out-
performed the remaining methods for most classifiers and enjoys
guaranteed validity (perfect calibration). VAs are also a valid option
given that often achieved results comparable to CPs while outputting a
probability, which is easily interpretable. We recall that while CPs
answer the question: “What is the probability of a given instance, being
as, or more, contrary than the test instance to the randomness as-
sumption, given the training set?”, VAs address the following question:
“What is the probability of assigning a certain class to the test instance,
given the training set?”. If users prefer a higher number of predictions
rather than validity, then the well-calibrated probability estimates
outputted by LR are a better option.

3.4. Ensemble-based approach to target the uncertainty of predictions at
patient-level

In this Section, we report the results of the proposed ensemble-based

Table 5
Specificity computed for each classifier and uncertainty method, per threshold, using CCC. The percentage of predictions above the respective threshold is reported
within brackets.

NB

DPE CP - FP CP – PR VA Platt IR

All 0.788 ± 0.0 0.786 ± 0.00 – 0.784 ± 0.01 0.786 ± 0.01 0.777 ± 0.01
0.80 0.807 ± 0.01 (96%) 0.897 ± 0.00 (40%) 0.901 ± 0.01 (39%) 0.886 ± 0.02 (57%) 0.792 ± 0.02 (49%) 0.882 ± 0.01 (65%)
0.90 0.824 ± 0.00 (90%) 0.957 ± 0.01 (21%) 0.957 ± 0.01 (19%) 0.935 ± 0.03 (17%) 0.0 ± 0.0 (0%) 0.897 ± 0.01(30%)
0.95 0.836 ± 0.00 (86%) 0.981 ± 0.02 (9%) 0.968 ± 0.00 (8%) 0.968 ± 0.02 (5%) 0.0 ± 0.0 (0%) 0.940 ± 0.02(12%)

DT

DPE CP - FP CP – PR VA Platt IR

All 0.729 ± 0.01 0.673 ± 0.02 – 0.658 ± 0.02 0.727 ± 0.01 0.719 ± 0.02
0.80 0.755 ± 0.02 (87%) 0.702 ± 0.03 (77%) 0.926 ± 0.33 (1%) 0.861 ± 0.02 (43%) 0.670 ± 0.16 (12%) 0.759 ± 0.04 (31%)
0.90 0.769 ± 0.02 (61%) 0.645 ± 0.04 (53%) 0.0 ± 0.0 (0%) 0.898 ± 0.02 (27%) 0.0 ± 0.0 (0%) 0.0 ± 0.0 (2%)
0.95 0.737 ± 0.04 (30%) 0.566 ± 0.07 (31%) 0.0 ± 0.0 (0%) 0.0 ± 0.0 (6%) 0.0 ± 0.0 (0%) 0.0 ± 0.0 (1%)

LR

DPE CP - FP CP – PR VA Platt IR

All 0.788 ± 0.01 0.766 ± 0.01 – 0.795 ± 0.01 0.779 ± 0.02 0.772 ± 0.02
0.80 0.892 ± 0.01 (61%) 0.916 ± 0.02 (42%) 0.935 ± 0.01 (31%) 0.904 ± 0.02 (50%) 0.877 ± 0.01 (58%) 0.875 ± 0.02 (56%)
0.90 0.922 ± 0.02 (41%) 0.949 ± 0.01 (21%) 0.961 ± 0.01 (13%) 0.932 ± 0.02 (26%) 0.0 ± 0. 0 (4%) 0.912 ± 0.03 (25%)
0.95 0.935 ± 0.02 (27%) 0.961 ± 0.01 (10%) 0.976 ± 0.03 (5%) 0.923 ± 0.03 (6%) 0.0 ± 0.0 (0%) 0.939 ± 0.04 (11%)

SVM Poly

DPE CP - FP CP – PR VA Platt IR

All 0.789 ± 0.01 0.762 ± 0.01 – 0.791 ± 0.01 0.783 ± 0.01 0.774 ± 0.01
0.80 0.943 ± 0.02 (23%) 0.913 ± 0.01 (42%) 0.928 ± 0.02 (26%) 0.894 ± 0.01 (43%) 0.897 ± 0.02 (46%) 0.875 ± 0.01 (54%)
0.90 0.982 ± 0.03 (9%) 0.941 ± 0.02 (21%) 0.945 ± 0.02 (9%) 0.907 ± 0.02 (28%) 0.928 ± 0.02 (23%) 0.914 ± 0.03 (29%)
0.95 0.992 ± 0.02 (5%) 0.966 ± 0.02 (11%) 1.0 ± 0.0 (3%) 0.974 ± 0.04 (5%) 0.954 ± 0.04 (11%) 0.934 ± 0.04 (12%)

SVM RBF

DPE CP - FP CP – PR VA Platt IR

All 0.788 ± 0.01 0.792 ± 0.00 – 0.781 ± 0.00 0.787 ± 0.01 0.785 ± 0.01
0.80 0.920 ± 0.02 (27%) 0.901 ± 0.00 (41%) 0.902 ± 0.00 (39%) 0.885 ± 0.00 (59%) 0.899 ± 0.01 (51%) 0.877 ± 0.01 (65%)
0.90 0.959 ± 0.02 (10%) 0.938 ± 0.01 (20%) 0.945 ± 0.01 (20%) 0.897 ± 0.03 (17%) 0.929 ± 0.01 (27%) 0.909 ± 0.02 (29%)
0.95 0.950 ± 0.02 (5%) 0.954 ± 0.01 (11%) 0.961 ± 0.01 (9%) 0.978 ± 0.04 (4%) 0.948 ± 0.02 (13%) 0.927 ± 0.02 (12%)

NN

DPE CP - FP CP – PR VA Platt IR

All 0.711 ± 0.01 0.679 ± 0.01 – 0.604 ± 0.04 0.732 ± 0.01 0.723 ± 0.01
0.80 0.738 ± 0.01 (89%) 0.815 ± 0.03 (47%) 0.938 ± 0.03 (18%) 0.934 ± 0.03 (22%) 0.704 ± 0.06 (15%) 0.857 ± 0.02 (39%)
0.90 0.753 ± 0.01 (83%) 0.867 ± 0.04 (22%) 0.948 ± 0.03 (12%) 0.934 ± 0.03 (21%) 0.0 ± 0.0 (0%) 0.881 ± 0.04 (16%)
0.95 0.763 ± 0.01 (77%) 0.885 ± 0.04 (11%) 0.949 ± 0.04 (7%) 0.933 ± 0.03 (21%) 0.0 ± 0.0 (0%) 0.881 ± 0.01 (10%)

Table 6
Results of the Cox Proportional Hazard Regression model and respective
probability of progression to AD used to measure the uncertainty of predictions,
per threshold, using CCC. The percentage of predictions above the respective
threshold is reported within brackets.

AUC Sensitivity Specificity

All 0.783 ± 0.1 0.743 ± 0.01 0.850 ± 0.01
0.80 0.826 ± 0.01 (54%) 0.858 ± 0.01 0.919 ± 0.01
0.90 0.845 ± 0.01 (34%) 0.898 ± 0.01 0.931 ± 0.01
0.95 0.863 ± 0.02 (18%) 0.952 ± 0.01 0.917 ± 0.01
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approach, as assessed by the averaged AUC over the outer CV loop,
using CCC and ADNI data. Four rules are used in the aggregator step.
Two of these are general rules, independent of the results discussed in
Section 3.3: (1) using all pairs of classifiers and methods to assess the
uncertainty of predictions (labeled “R1: All”), and (2) using the un-
certainty method with highest AUC per classifier (labeled “R2: Max”).
The two additional rules were defined in the aftermath of results dis-
cussed in Section 3.3. Namely, rule (3) uses 1) but excluding pairs
(classifier, uncertainty method) whose results are known to harm the
performance of the ensemble, namely, using DT, DPE with NB and NN,
and PS with NB and NN (labeled “R3: All but some”). Rule 4 uses CPs
(PR and FP frameworks) built on top of NB, LR and SVM (Poly and
RBF), and is labeled as “R4: CPs”. We excluded DT as it underperforms
all other classifiers. Although these rules are drawn using CCC data
(Section 3.3), we extrapolate them to ADNI data. We note, however,
that other rules may be tested to improve the results. We recall that the
final prediction is that with the highest uncertainty value among the
uncertainty methods and classifiers tested.

3.4.1. Using CCC data
Table 7 reports the results obtained with the ensemble-based ap-

proach to target uncertainty of predictions for each rule implemented in
the aggregator step, per threshold, using CCC data. The best pairs ac-
cording to the rule “R2: Max” are the following:<(NB, CP-PR), (LR, CP-
PR), (DT, VAs), (SVM Poly, CP-PR), (SVM RBF, DPE), (NN, CP-PR)>.

Not surprisingly, feeding the ensemble with all pairs of classifiers
and uncertainty methods led to the poorest results. This is possibly due
to the uncalibrated probabilities estimated by NB and NN, which, as
illustrated in Fig. 3, assumed values close to 0 and 1, even for mis-
classified cases. By removing this source of noise, using rule “R3: All but
some”, the classification performance improved, although with a drop
in the number of predictions made. Compared to Table 3, these results
are competitive with those obtained with LR using DPE, being superior
to the remaining, regarding the balance between AUC and the number
of predictions. Some predictions are made by CPs or VAs, enjoying
guaranteed validity, representing an advantage over the DPE produced
by LR.

The ensemble built exclusively with CPs, using different classifiers,
slightly increased the number of predictions and decreased AUC, when
compared to results obtained with CPs individually (Table 3). Finally,
using the uncertainty method with the highest AUC per classifier (“R2:
Max”) seems to be a valid alternative to the ensemble using rule “R3:

All but some”, since it improved AUC, despite having a lower number of
predictions. A trade-off between the number of predictions and classi-
fication performance of such predictions should be taken into con-
sideration when choosing the best settings to be applied into clinical
practice. As an illustrative example, Table 8 shows the output of the
ensemble for some patients, picked randomly.

3.4.2. Using ADNI data
The ensemble-based approach, with rules derived for CCC data, was

validated using ADNI data, a similar and publicly available dataset
(Table 9). The pairs (classifier, uncertainty method) selected accord-
ingly to rule “R2: Max”, using ADNI, were the following:<(NB, CP-PR),
(LR, CP-PR), (DT, VAs), (SVM Poly, DPE), (SVM RBF, DPE), (NN, CP-
PR)>. The overall results are in concordance with the conclusions
drawn for CCC data. Again, using all pairs of classifiers and methods to
build the ensemble conveyed the worst results. Using rule “R3: All but
some” represents a good compromise between a higher number of
predictions and an acceptable classification performance. Using rule
“R2: Max” yielded similar results to using only CPs in the ensemble,
despite the latter having guaranteed validity.

The validation using ADNI data shows that the proposed ensemble-
based approach to target uncertainty of predictions can be used with
similar datasets and prognostic problems.

4. Conclusions

The main contributions of this work are threefold:

• An outright comparison between different methods to target un-
certainty of predictions at patient-level, using different classifiers.
The analysis was performed with a clinical dataset (CCC), including
demographic and neuropsychological tests and around 400 MCI

Table 7
Results obtained with the ensemble-based approach to target predictions uncertainty using different rules in the aggregator step, per threshold, using CCC data. The
percentage of predictions above the respective threshold are reported within brackets.

AUC

R1: All R2: Max R3: All but some R4: CPs

0.80 0.724 ± 0.06 (99%) 0.882 ± 0.04 (64%) 0.852 ± 0.08 (86%) 0.917 ± 0.03 (52%)
0.90 0.757 ± 0.06 (98%) 0.902 ± 0.04 (40%) 0.866 ± 0.07 (53%) 0.947 ± 0.05 (28%)
0.95 0.793 ± 0.08 (95%) 0.912 ± 0.10 (13%) 0.867 ± 0.08 (34%) 0.929 ± 0.09 (14%)

Sensitivity

R1: All R2: Max R3: All but some R4: CPs

0.80 0.713 ± 0.14 (99%) 0.836 ± 0.11 (64%) 0.816 ± 0.19 (86%) 0.941 ± 0.07 (52%)
0.90 0.714 ± 0.14 (98%) 0.829 ± 0.13 (40%) 0.854 ± 0.16 (53%) 0.936 ± 0.06 (28%)
0.95 0.731 ± 0.12 (95%) 0.971 ± 0.06 (13%) 0.839 ± 0.16 (34%) 1.0 ± 0.0 (14%)

Specificity

R1: All R2: Max R3: All but some R4: CPs

0.80 0.756 ± 0.05 (99%) 0.854 ± 0.04 (64%) 0.815 ± 0.08 (86%) 0.903 ± 0.03 (52%)
0.90 0.757 ± 0.06 (98%) 0.901 ± 0.05 (40%) 0.902 ± 0.07 (53%) 0.940 ± 0.02 (28%)
0.95 0.768 ± 0.05 (95%) 0.948 ± 0.05 (13%) 0.905 ± 0.06 (34%) 0.958 ± 0.06 (14%)

Table 8
Example of output from the ensemble-based approach to target uncertainty of
individual instances, using = 0.90 and CCC.

Patient ID Predicted
class

Uncertainty
estimate

Classifier & Uncertainty
method

802 sMCI 0.949 LR & DPE
722 cMCI 0.918 NB & CP-PR
17 sMCI 0.915 LR & VAs
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patients.
• An ensemble-based approach combining different classifiers and
methods to target uncertainty of predictions with the aim of opti-
mizing the quality and quantity of predictions made. Two datasets
were used to validate this approach, CCC and ADNI.
• A new conformity measure for SVM.

Most classifiers produce predictions for new instances accurately,
without providing a reliable measure of how uncertain predictions are.
In the medical domain, this hampers their integration in decision sup-
port systems, which could be useful in the clinical practice. Some
strategies have been proposed to calibrate predictions (such as Platt
Scaling or Isotonic Regression) or complement predictions with theo-
retical-backed measures to assess their risk of error (Venn-ABERS or
Conformal Predictors). The usefulness of these methods depends on the
classifier and data under study, and their choice is not trivial. Despite
some of these methods have been compared in the literature
[19,21,22,26], to our knowledge, no comparison was made using all
methods in a common dataset. Moreover, usually large datasets were
studied, while clinical data usually have a reduced number of instances.

According to our experimental results, Platt Scaling is only adequate
to calibrate SVM’s output, which produces a characteristic sigmoid
distortion in their predictions. In contrast with [13], Isotonic Regres-
sion performed better than PS for the remaining classifiers, even when
using small calibration sets. Despite being superior to PS, calibrating DT
scores using IR produced poor results. In fact, DT underperformed all
the remaining classifiers, across all methods, showing not to be ap-
propriate to learn the prognostic problem under study. In contrast, LR
proved to be well-calibrated, thus outperforming both calibration
methods (DPE + LR). CPs and VAs produce similar transformations of
the prediction scores among the classifiers. CPs typically pushed the
credibility mass values of incorrect predictions to a range of values
between 0.4 and 0.8. However, the correctly classified cases are in
general spread all over the histogram. In this context, CPs lessen false
negative and false positives values and, despite in small number, pro-
duce predictions with a low error rate for high credibility thresholds.
CPs successfully complement predictions with credibility scores (or
within confident prediction regions) for all classifiers, except for DT.
Likewise, VAs pushed uncertainty estimates associated with mis-
classified cases to the center and formed two peaks near the histogram
ends (0 and 1) of correctly classified cases. Still, it was underperformed
by CPs built on top of LR and SVM RBF, since it failed on further

extending the tails closer to 0 and 1. Therefore, for high-certainty
thresholds, namely for = 0.95 , it makes no predictions. With this in
mind, and given their guaranteed validity, CPs and VAs are preferable
methods to complement predictions with a measure of uncertainty.
VAs, outputting a probability, may have an advantage over CPs, which
has a less interpretable outcome (p-values). Moreover, considering the
simplicity of the approach, and the higher number of predictions made,
using the probabilities estimated by LR is also a competitive approach.

In this work, we verified that the drawback of leaving a large
number of patients without prognostic (those who cannot be predicted
given the certainty threshold) was transversal to most classifiers and
uncertainty methods evaluated. To tackle this problem, we proposed an
ensemble-based approach to combine predictions from multiple pairs of
(classifier, uncertainty method), made at high certainty thresholds, thus
supplying a reliable prognosis to more patients. The goal was to max-
imize the number of predictions outputted by the model, taking ad-
vantage of all certain predictions made by the different methods, by
aggregating individual predictions using the ensemble. The number of
predictions made by the ensemble was, in fact, higher than the number
of predictions possible when individual classifiers and uncertainty
methods were used. Nevertheless, the considerable number of patients
without a final prognostic still warrants considerations. We note how-
ever that the number of predictions the model is able to make will al-
ways be dependent on the complexity of the problem, the quality of the
data used to learn the models and the learning capacity of the base
learners (both classifiers and uncertainty methods) used in the en-
semble. For example, in our problem, we used two datasets. In CCC
dataset a maximum of 14% of cases were predicted at the highest
certainty threshold and using rule “R4: CPs” (as opposed to 11% of
predictions when using CPs individually) while in ADNI 21% of cases
were predicted. This clearly showcases that maintaining the base
learning, the ensemble always improves the number of predictions, but
the increase in performance depends on the dataset. With this in mind,
more powerful learners (and other parameters) can always be used
together with more/other data. Another possibility could be to study
whether the inclusion of other non-conformity measures can increase
CPs efficiency. Moreover, as future work, we plan to implement the
inductive version of CPs and VAs to make this approach usable for
higher dimensional datasets.

A trade-off between the number of predictions and classification
performance should be taken into consideration when choosing the best
settings to be applied to clinical practice. For prognostic prediction in

Table 9
Results obtained with the ensemble-based approach to target predictions uncertainty using different rules in the aggregator step, per threshold, using ADNI data. The
percentage of predictions above the respective threshold are reported within brackets.

AUC

R1: All R2: Max R3: All but some R4: CPs

0.80 0.742 ± 0.03 (100%) 0.942 ± 0.08 (59%) 0.862 ± 0.03 (97%) 0.949 ± 0.03 (57%)
0.90 0.757 ± 0.05 (99%) 0.932 ± 0.08 (43%) 0.890 ± 0.04 (67%) 0.979 ± 0.03 (32%)
0.95 0.797 ± 0.03 (97%) 0.968 ± 0.07 (23%) 0.931 ± 0.04 (49%) 0.976 ± 0.05 (21%)

Sensitivity

R1: All R2: Max R3: All but some R4: CPs

0.80 0.743 ± 0.09 (100%) 0.861 ± 0.16 (59%) 0.762 ± 0.15 (97%) 0.868 ± 0.04 (57%)
0.90 0.760 ± 0.09 (99%) 0.876 ± 0.16 (43%) 0.827 ± 0.09 (67%) 0.985 ± 0.03 (32%)
0.95 0.756 ± 0.09 (97%) 0.900 ± 0.22 (23%) 0.860 ± 0.09 (49%) 1.0 ± 0.0 (21%)

Specificity

R1: All R2: Max R3: All but some R4: CPs

0.80 0.779 ± 0.03 (100%) 0.904 ± 0.07 (59%) 0.834 ± 0.03 (97%) 0.908 ± 0.02 (57%)
0.90 0.789 ± 0.03 (99%) 0.926 ± 0.08 (43%) 0.898 ± 0.03 (67%) 0.969 ± 0.04 (32%)
0.95 0.789 ± 0.02 (97%) 0.959 ± 0.09 (23%) 0.920 ± 0.04 (49%) 0.960 ± 0.06 (21%)
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AD, clinicians would rather reduce the number of prediction errors at
patient-level than increasing the number of predictions made. Based on
that, clinicians could withhold the decision about future dementia
status for unreliable predictions and would promote the selection of
patients at high risk of conversion for clinical trials for reliable pre-
dictions. In this context, classification performance gains priority over
the number of predictions. In this scenario, rules “R2: Max” and “R4:
CPs” should be preferred. The former selects the uncertainty method
that optimizes AUC per classifier. It is a general rule (independent of the
previous evaluation of results) and produces high classification per-
formances for a number of predictions superior to those outputted when
using rule “R4: CPs”. The ensemble built exclusively with CPs (“R4:
CPs”) has the advantage of having guaranteed validity and achieving
the highest classification performance, at the cost of providing the
lowest number of predictions. In the case of setting the certainty
threshold as 0.95, “R4: CPs” must be used, since it yields higher clas-
sification performances, for a number of predictions similar to those
produced by rule “R2: Max”. Rule “R1: All”, where all pairs of classifiers
and methods are used to build the ensemble should be avoid, since it
consistently convey the worst results. If users focus on a higher number
of predictions rather than classification performance, rule “R3: All but
some” should be preferred. By removing the pairs of (classifier, un-
certainty method) that hampers the predictive ability of the model, it
represents a good compromise between a higher number of predictions
and an acceptable classification performance.
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